3.4.81 \(\int \frac {1}{x (a+b x^3) \sqrt {c+d x^3}} \, dx\) [381]

Optimal. Leaf size=85 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a \sqrt {c}}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 a \sqrt {b c-a d}} \]

[Out]

-2/3*arctanh((d*x^3+c)^(1/2)/c^(1/2))/a/c^(1/2)+2/3*arctanh(b^(1/2)*(d*x^3+c)^(1/2)/(-a*d+b*c)^(1/2))*b^(1/2)/
a/(-a*d+b*c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {457, 88, 65, 214} \begin {gather*} \frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 a \sqrt {b c-a d}}-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

(-2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a*Sqrt[c]) + (2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c -
a*d]])/(3*a*Sqrt[b*c - a*d])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), In
t[(e + f*x)^p/(a + b*x), x], x] - Dist[d/(b*c - a*d), Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d,
e, f, p}, x] &&  !IntegerQ[p]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \left (a+b x^3\right ) \sqrt {c+d x^3}} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {1}{x (a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )\\ &=\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )}{3 a}-\frac {b \text {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^3\right )}{3 a}\\ &=\frac {2 \text {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 a d}-\frac {(2 b) \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{3 a d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{3 a \sqrt {c}}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {b c-a d}}\right )}{3 a \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 82, normalized size = 0.96 \begin {gather*} -\frac {\frac {2 \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^3}}{\sqrt {-b c+a d}}\right )}{\sqrt {-b c+a d}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{\sqrt {c}}}{3 a} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x^3)*Sqrt[c + d*x^3]),x]

[Out]

-1/3*((2*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[-(b*c) + a*d]])/Sqrt[-(b*c) + a*d] + (2*ArcTanh[Sqrt[c
+ d*x^3]/Sqrt[c]])/Sqrt[c])/a

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.38, size = 453, normalized size = 5.33

method result size
default \(\frac {i b \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,\textit {\_Z}^{3}+a \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {b \left (2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d \right )}{2 d \left (a d -b c \right )}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \left (a d -b c \right ) \sqrt {d \,x^{3}+c}}\right )}{3 a \,d^{2}}-\frac {2 \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3 a \sqrt {c}}\) \(453\)
elliptic \(\text {Expression too large to display}\) \(1598\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*I*b/a/d^2*2^(1/2)*sum(1/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/
3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2
*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/
3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi
(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/
d*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha
-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_
alpha=RootOf(_Z^3*b+a))-2/3*arctanh((d*x^3+c)^(1/2)/c^(1/2))/a/c^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^3 + a)*sqrt(d*x^3 + c)*x), x)

________________________________________________________________________________________

Fricas [A]
time = 3.68, size = 431, normalized size = 5.07 \begin {gather*} \left [\frac {c \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{3} + a}\right ) + \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right )}{3 \, a c}, \frac {2 \, c \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{3} + b c}\right ) + \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right )}{3 \, a c}, \frac {c \sqrt {\frac {b}{b c - a d}} \log \left (\frac {b d x^{3} + 2 \, b c - a d + 2 \, \sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {\frac {b}{b c - a d}}}{b x^{3} + a}\right ) + 2 \, \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right )}{3 \, a c}, \frac {2 \, {\left (c \sqrt {-\frac {b}{b c - a d}} \arctan \left (-\frac {\sqrt {d x^{3} + c} {\left (b c - a d\right )} \sqrt {-\frac {b}{b c - a d}}}{b d x^{3} + b c}\right ) + \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right )\right )}}{3 \, a c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/3*(c*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b
*x^3 + a)) + sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3))/(a*c), 1/3*(2*c*sqrt(-b/(b*c - a*d))*
arctan(-sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) + sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3
+ c)*sqrt(c) + 2*c)/x^3))/(a*c), 1/3*(c*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*
c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)) + 2*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c))/(a*c), 2/3*(c*sqrt
(-b/(b*c - a*d))*arctan(-sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) + sqrt(-c)*arctan(s
qrt(d*x^3 + c)*sqrt(-c)/c))/(a*c)]

________________________________________________________________________________________

Sympy [A]
time = 5.42, size = 70, normalized size = 0.82 \begin {gather*} - \frac {2 \operatorname {atan}{\left (\frac {\sqrt {c + d x^{3}}}{\sqrt {\frac {a d - b c}{b}}} \right )}}{3 a \sqrt {\frac {a d - b c}{b}}} + \frac {2 \operatorname {atan}{\left (\frac {\sqrt {c + d x^{3}}}{\sqrt {- c}} \right )}}{3 a \sqrt {- c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**3+a)/(d*x**3+c)**(1/2),x)

[Out]

-2*atan(sqrt(c + d*x**3)/sqrt((a*d - b*c)/b))/(3*a*sqrt((a*d - b*c)/b)) + 2*atan(sqrt(c + d*x**3)/sqrt(-c))/(3
*a*sqrt(-c))

________________________________________________________________________________________

Giac [A]
time = 1.19, size = 71, normalized size = 0.84 \begin {gather*} -\frac {2 \, b \arctan \left (\frac {\sqrt {d x^{3} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{3 \, \sqrt {-b^{2} c + a b d} a} + \frac {2 \, \arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{3 \, a \sqrt {-c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-2/3*b*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*a) + 2/3*arctan(sqrt(d*x^3 + c)/sq
rt(-c))/(a*sqrt(-c))

________________________________________________________________________________________

Mupad [B]
time = 7.31, size = 114, normalized size = 1.34 \begin {gather*} \frac {\ln \left (\frac {{\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )}^3\,\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )}{x^6}\right )}{3\,a\,\sqrt {c}}+\frac {\sqrt {b}\,\ln \left (\frac {a\,d-2\,b\,c-b\,d\,x^3+\sqrt {b}\,\sqrt {d\,x^3+c}\,\sqrt {a\,d-b\,c}\,2{}\mathrm {i}}{b\,x^3+a}\right )\,1{}\mathrm {i}}{3\,a\,\sqrt {a\,d-b\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^3)*(c + d*x^3)^(1/2)),x)

[Out]

log((((c + d*x^3)^(1/2) - c^(1/2))^3*((c + d*x^3)^(1/2) + c^(1/2)))/x^6)/(3*a*c^(1/2)) + (b^(1/2)*log((a*d - 2
*b*c + b^(1/2)*(c + d*x^3)^(1/2)*(a*d - b*c)^(1/2)*2i - b*d*x^3)/(a + b*x^3))*1i)/(3*a*(a*d - b*c)^(1/2))

________________________________________________________________________________________